Poisson$96361$ - определение. Что такое Poisson$96361$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Poisson$96361$ - определение

FRENCH MATHEMATICIAN, MECHANICIAN AND PHYSICIST (1781–1840)
Siméon Poisson; Siméon-Denis Poisson; Simeon D. Poisson; Simeon Denis Poisson; Simeon Poisson; Simeon-Denis Poisson; Siméon denis poisson; Simeon denis poisson; S. D. Poisson
  • Poisson in 1804 by E. Marcellot
  • an undergraduate textbook]].

Poisson point process         
  • Graph of an inhomogeneous Poisson point process on the real line. The events are marked with black crosses, the time-dependent rate <math> \lambda(t) </math> is given by the function marked red.
  • An illustration of a marked point process, where the unmarked point process is defined on the positive real line, which often represents time. The random marks take on values in the state space <math>S</math> known as the ''mark space''. Any such marked point process can be interpreted as an unmarked point process on the space <math>[0,\infty]\times S </math>. The marking theorem says that if the original unmarked point process is a Poisson point process and the marks are stochastically independent, then the marked point process is also a Poisson point process on <math>[0,\infty]\times S </math>. If the Poisson point process is homogeneous, then the gaps <math>\tau_i</math> in the diagram are drawn from an exponential distribution.
  • s2cid=8409538 }}</ref>
RANDOM MATHEMATICAL OBJECT THAT CONSISTS OF POINTS RANDOMLY LOCATED ON A MATHEMATICAL SPACE
Poisson process; Inhomogeneous Poisson process; Non-homogenous Poisson process; Poisson random process; Poisson Random process; Poisson Random Process; Poisson random Process; Poisson Process; Poisson processes; A Poisson process; Non-homogeneous Poisson process; Nonhomogeneous Poisson process; Spatial Poisson process; Wikipedia talk:Articles for creation/Spatial Poisson Process; Spatial Poisson Process; Poisson point field; Poisson random point field; Homogeneous Poisson process; Homogeneous Poisson point process
In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space. The Poisson point process is often called simply the Poisson process, but it is also called a Poisson random measure, Poisson random point field or Poisson point field.
Poisson's ratio         
PARAMETER OF ELASTIC MATERIALS: RATIO OF TRANSVERSE STRAIN TO AXIAL STRAIN
Poisson ratio; Poisons ratio; Poison's ratio; Poisson Ratio; Poissons ratio; Poisson's effect; Poisson contraction; Poisson's Ratio; Poisson’s ratio; Poisson effect
In materials science and solid mechanics, Poisson's ratio \nu (nu) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading. The value of Poisson's ratio is the negative of the ratio of transverse strain to axial strain.
Poisson's equation         
PARTIAL DIFFERENTIAL EQUATION OF ELLIPTIC TYPE WITH BROAD UTILITY IN MECHANICAL ENGINEERING AND THEORETICAL PHYSICS
Poisson equation; Poisson's Equation; Poisson’s equation; Poisson problem; Poisson's problem; Poisson surface reconstruction
Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate electrostatic or gravitational (force) field.

Википедия

Siméon Denis Poisson

Baron Siméon Denis Poisson FRS FRSE (French: [si.me.ɔ̃ də.ni pwa.sɔ̃]; 21 June 1781 – 25 April 1840) was a French mathematician and physicist who worked on statistics, complex analysis, partial differential equations, the calculus of variations, analytical mechanics, electricity and magnetism, thermodynamics, elasticity, and fluid mechanics. Moreover, he predicted the Poisson spot in his attempt to disprove the wave theory of Augustin-Jean Fresnel, which was later confirmed.